Computationally efficient maximum-likelihood estimation of structured covariance matrices

نویسندگان

  • Hongbin Li
  • Petre Stoica
  • Jian Li
چکیده

A computationally e cient method for structured covariance matrix estimation is presented. The proposed method provides an Asymptotic (for large samples) Maximum Likelihood estimate of a structured covariance matrix and is referred to as AML. A closed-form formula for estimating Hermitian Toeplitz covariance matrices is derived which makes AML computationally much simpler than most existing Hermitian Toeplitz matrix estimation algorithms. The AML covariance matrix estimator can be used in a variety of applications. We focus on array processing herein and show that AML enhances the performance of angle estimation algorithms, such as MUSIC, by making them attain the corresponding Cram er-Rao bound (CRB) for uncorrelated signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covariance Tapering for Likelihood Based Estimation in Large Spatial Datasets

Maximum likelihood is an attractive method of estimating covariance parameters in spatial models based on Gaussian processes. However, calculating the likelihood can be computationally infeasible for large datasets, requiring O(n3) calculations for a dataset with n observations. This article proposes the method of covariance tapering to approximate the likelihood in this setting. In this approa...

متن کامل

Explicit estimators of parameters in the Growth Curve model with linearly structured covariance matrices

Estimation of parameters in the classical Growth Curve model, when the covariance matrix has some specific linear structure, is considered. In our examples maximum likelihood estimators can not be obtained explicitly and must rely on optimization algorithms. Therefore explicit estimators are obtained as alternatives to the maximum likelihood estimators. From a discussion about residuals, a simp...

متن کامل

Constrained Maximum-likelihood Covariance Estimation for Time-varying Sensor Arrays

We examine the problem of maximum likelihood covariance estimation using a sensor array in which the relative positions of individual sensors change over the observation interval The problem is cast as one of estimating a structured covariance matrix sequence. A vector space structure is imposed on such sequences, and within that vector space we define a constraint space given by the intersecti...

متن کامل

Covariance Structures for Quantitative Genetic Analyses

INTRODUCTION Covariance matrices in quantitative genetic analyses have, by and large, been considered ‘unstructured’, i.e. for q random variables, there are q(q + 1)/2 distinct covariance components. This implies that the number of parameters to be estimated increases quadratically with the number of variables. Multivariate analyses involving more than a few traits have been hampered by computa...

متن کامل

Unconstrained parametrizations for variance-covariance matrices

The estimation of variance-covariance matrices in situations that involve the optimization of an objective function (e.g. a log-likelihood function) is usually a difficult numerical problem, since the resulting estimates should be positive semi-definite matrices. We can either use constrained optimization, or employ a parameterization that enforces this condition. We describe here five differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 47  شماره 

صفحات  -

تاریخ انتشار 1998